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Abstract

Perfect equilibrium and sequential equilibrium are popular equilibrium concepts for finite

extensive-form games. We find a relatively simple necessary and sufficient condition making

sequential equilibrium perfect. We interpret the condition while referring to Okada’s (1991)

lexicographic domination. When each path includes at maximum two decision nodes, any

lexicographically undominated strategy combination is a perfect equilibrium. Our results en-

able us to discuss “perfect equilibrium” in games with uncountable actions via lexicographic

domination, which is applicable to uncountable actions.

1 Introduction

Perfect equilibrium and sequential equilibrium are popular equilibrium concepts for finite extensive-

form games. Selten (1975) proposed perfect equilibrium, in which players are cautious about the

possibility of future errors. However, perfect equilibrium is difficult to calculate. To avoid this

difficulty, Kreps & Wilson (1982) proposed a slightly weaker concept, sequential equilibrium, in

which players select their best local strategies at each information set.We find a relatively simple

necessary and sufficient condition making sequential equilibrium perfect. In other words, we find
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a procedure that supports finding perfect equilibrium. We call this condition From Sequential

equilibrium To Perfect equilibrium (FSTP).

FSTP implies that perfect equilibrium does not require a common idea about future errors in

some situations. For example, consider a simple game in which each path includes at maximum

two decision nodes (hereafter a short game). If players avoid Okada’s (1991) lexicographically

dominated strategies, this strategy profile is a perfect equilibrium (Proposition 1).

In the process of analyzing short games, we found the linearity of utility function (Lemma

2). It looks valid only in limited circumstances, but this linearity exists in general settings, and

we analyze it in another project Jinushi (2024).

Our results enable us to discuss “perfect equilibrium” in short games with uncountable

actions via lexicographic domination, which is applicable to uncountable actions. In Appendix

A.6, we apply lexicographic domination to a 3-player short-game with infinite actions. As a

result, we obtain a set of “perfect equilibria” in the infinite-action game. Our discussion leads

to further investigation into finding a perfect equilibrium for infinite-action games.

2 FSTP in Finite Extensive-Form Games

In this section, we first formulate a standard finite extensive-form game. Then, we define

perfect equilibrium and sequential equilibrium. We derive the necessary and sufficient condition

that makes sequential equilibrium perfect. Although the difference has been discussed1, to our

knowledge, this is the first time that the exact condition has been derived. We interpret the

condition while referring to a related concept in Okada (1991).

We employ the standard concepts and terminologies in the literature (e.g. Kuhn(1953),

Selten (1975) and van Damme (1984)).

An n-player finite perfect-recall extensive-form game Γ = (K,P,U, p, h) consists of the fol-

lowing five elements: the game tree K, the player partition P = (P0, ..., Pn), the information

partition U = (U0, ..., Un), the nature’s probability distribution p, and the payoff function h.

K consists of non-terminal nodes in the finite set X including the origin Ø, terminal nodes in

the finite set Z, and directed links towards terminal nodes. Au represents the set of choices at

1See Kreps & Wilson (1982), Blume & Zame (1994) and Okada (1991).
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each u. We call each combination of nodes from the origin Ø to z ∈ Z a play. We call each

combination of nodes from x ∈ X to x′ ∈ X a path. In each play, a node from each information

set can exist at a maximum of once. Player 0 (nature) follows an exogenous completely mixed

probability distribution pu over Au at each information set u ∈ U0 such that pu(au) > 0 for all

au ∈ Au. u is a singleton if u ∈ U0. The payoff function h: Z → Rn represents the players’

payoff from z ∈ Z.

We denote a probability distribution biu over Au as a local strategy for player i ∈ I at an

information set u ∈ Ui. When there exists au ∈ Au such that biu(au) = 1, we call biu a pure

local strategy. A behavior strategy bi ∈ Bi is a combination of each local strategy for player i

(bi = (biu)u∈Ui). A pure behavior strategy bi ∈ PBi is a combination of each pure local strategy

for player i. b/b′iu is a strategy profile following b′iu at u and all other local strategy remain

unchanged from b.

For a given strategy profile, the realization probability of each x ∈ X and z ∈ Z, denoted

by ρ(x, b) and ρ(z, b), is uniquely determined. The realization probability of an information set

u is ρ(u, b) =
∑

x∈u ρ(x, b). ρ(z, b|x) is the conditional realization probability of z ∈ Z after the

players reached x. If x ∈ X is not in the path from Ø to z ∈ Z, then ρ(z, b|x) = 0.

We introduce a local belief ρu(x) as the probability of each node x ∈ u ∈ Ui that the player

i believes at u. For any i ∈ I, a belief ρ is a function from u ∈ Ui to a local belief ρu.

Definition 1 A strategy profile b ∈ B is completely mixed if and only if biu(au) > 0 for all

au ∈ Au and for all u ∈ U .

When b ∈ B is completely mixed, the realization probability of x ∈ u and the belief,

ρu(x) = ρ(x, b)/ρ(u, b), at each information set are uniquely determined. Such a belief is called

a consistent belief with b. Kreps & Wilson (1982) extend this idea to construct a rational belief

for any b ∈ B in the following way:

Definition 2 An assessment (b, ρ) is consistent when there exists a sequence of completely mixed

strategy profiles and beliefs (bj , ρj) → (b, ρ) where ρj is consistent with bj.

We denote CO as a mapping from b ∈ B to a set of ρ such that (b, ρ) is consistent. For

each sequence of completely mixed strategy profiles bj → b, there exists a unique sequence
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ρj ∈ CO(bj). This sequence may not converge to any point, but it always includes a conver-

gent subsequence because the sequence is in a compact space (Bolzano-Weierstrass Theorem).

Hereafter, we consider such a subsequence and skip this explanation.

The ex-ante expected payoff vector H(b) = (H1(b), ...,Hn(b)) is

H(b) =
∑
z∈Z

ρ(z, b)h(z) (1)

The expected payoff vector at an information set u is

H(b, u|ρ) =
∑
x∈u

ρu(x)
∑
z∈Z

ρ(z, b|x)h(z). (2)

When b is a completely mixed strategy profile, since ρ(u, b) > 0 for any u ∈ U , a consistent

belief ρ is uniquely determined. For such situations, we sometimes denote H(b, u) instead of

H(b, u|ρ).

We claim the following basic characteristic of the expected payoff vector at an information

set:

Lemma 1 Consider a sequence of completely mixed strategy profiles and consistent beliefs such

that (bm, ρm) → (b, ρ). Then, H(bm/b′iu, u|ρm) → H(b/b′iu, u|ρ) for any i ∈ I,u ∈ Ui and

b′iu ∈ PBiu.

Proof: See Appendix A.1.

Hendon et al. (1996) show the following representation for sequential equilibrium:

Definition 3 An assessment (b, ρ) is a sequential equilibrium if and only if there exists a se-

quence (bm, ρm) → (b, ρ) such that bm is a completely mixed strategy profile, ρm ∈ CO(bm) and

for all i ∈ I, for all u ∈ Ui and for all b′iu ∈ PBiu,

Hi(b, u|ρ) ≧ Hi(b/b
′
iu, u|ρ) (3)

SE(Γ) denotes the set of all sequential equilibria strategy profiles b ∈ B in Γ. The set of

beliefs ρ satisfying sequential equilibria for b ∈ SE(Γ) is denoted by SEB(Γ, b).
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The following representation for perfect equilibrium is useful for comparison2.

Definition 4 A strategy profile b is a perfect equilibrium if and only if there exists a sequence

bm → b such that bm is a completely mixed strategy profile for all i ∈ I, for all u ∈ Ui and for

all b′iu ∈ PBiu,

Hi(b
m/biu, u) ≧ Hi(b

m/b′iu, u) (4)

The set of all perfect equilibria b ∈ B in Γ is denoted by PE(Γ).

From Lemma 1, Definition 3 and Definition 4, we get the following theorem.

Theorem 1 (From Sequential Equilibrium To Perfect Equilibrium) For b ∈ SE(Γ) in

an incomplete-information game Γ, the following conditions A and B are equivalent.

A: b ∈ PE(Γ)

B: There exist a belief system ρ ∈ SEB(Γ, b), a sequence of completely-mixed strategy profiles

and beliefs (b′′k, ρk) → (b, ρ) such that ρk ∈ CO(b′′k), which satisfies, for any player ∀i ∈ I, at

any information set u ∈ Ui and each pure strategy profile b′ ∈ PB such that Hi(b, u|ρ) =

Hi(b/b
′
iu, u|ρ), the following condition:

Hi(b
′′k/biu, u|ρk) ≧ Hi(b

′′k/b′iu, u|ρk) (5)

Proof: See Appendix A.2.

Theorem 1 provides a new insight into trembling-hand perfect equilibrium. Players have to

be cautious only if the game is complicated. For example, consider a perfect-information game

and a sequential equilibrium with a single multi-best-reply information set u. At u, if the player

takes care of an impact on the payoff from any arbitrary possible error after u, the player would

pick a choice in the strategy profile of a perfect equilibrium. Some tie-breaking reasonings, like

selecting a choice with the maximum possible outcome based on future errors, also select a choice

in one of the strategy profiles in the set of perfect equilibria if they impact the player’s payoff.

2Selten (1975) defines perfect equilibrium as a limit of Nash equilibria in a sequence of perturbed agent-
normal-form games converging to the original agent-normal-form game. If and only if this definition is satisfied,
the sequence of completely mixed strategy profiles makes all local strategies in the limit of strategy profiles
optimal.
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In simple settings, a trembling-hand perfect equilibrium can be explained by the optimization

of each information set with a rough tie-breaking rule.

To understand when simple settings and individual tie-breaking rules lead to perfect equi-

librium, we refer to Okada (1991)’s lexicographically undominated strategy combination.

Definition 5 (Proposition 2.4 of Okada (1991)) In b ∈ B, biu lexicographically dominates

b′iu if and only if some neighborhood O ⊂ B of b such that

Hi(b
′′/biu, u) > Hi(b

′′/b′iu, u) (6)

for any completely mixed strategy profile b′′ ∈ O3.

A strategy profile b is called a lexicographically undominated strategy combination when each

biu is not lexicographically dominated by any b′iu ∈ Biu for any i ∈ I and at any u ∈ Ui. A

lexicographically undominated strategy combination does not require players to share a similar

idea about the impact of future errors.

In the following paragraphs, we show that this lexicographically undominated strategy com-

bination is necessary and sufficient for trembling-hand perfection in short games. For the prepa-

ration, we claim the following lemmas:

Lemma 2 In Γ where only two information set exists,

Hi((1− ϵ)b+ ϵb′′/biu, u) = (1− ϵ)Hi(b/biu, u) + ϵHi(b
′′/biu, u) (7)

for any b, b′′ ∈ B′, i ∈ I, u ∈ Ui and ϵ ∈ (0, 1).

Proof: See Appendix A.3.

Lemma 3 In Γ where each path includes a maximum of two decision nodes, if biu is not lexico-

graphically dominated in b, there exists a sequence of completely mixed strategy profiles bk → b

such that for any b′iu ∈ Biu,

Hi(b
k/biu, u) ≧ Hi(b

k/b′iu, u). (8)

3Here, O does not include b.
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Proof: See Appendix A.4.

In conclusion, we obtain the following proposition:

Proposition 1 When each path includes at maximum two decision nodes in Γ, a lexicographi-

cally undominated strategy combination is a perfect equilibrium.

Proof: See Appendix A.5.
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A Online Appendix

A.1 Proof of Lemma 1

Since ρ(x, b) and ρ(z, b|x) are the product of the subset of {biu(au)|∀i ∈ I, ∀u ∈ Ui,∀au ∈ Au} (and

path-specific constant values from the Player 0’s moves), for any pure local strategy b′iu ∈ PBiu,
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H(bm/b′iu, u|ρ) → H(b/b′iu, u|ρ) as bm → b. Since ρm → ρ, ρmu (x) → ρu(x) and so H(bm/b′iu, u|ρm) →

H(b/b′iu, u|ρ).

A.2 Proof of Theorem 1

⇒: From Definition 4, if b ∈ PE(Γ), there exist a sequence bk → b and ρk → ρ such that ρk ∈ CO(bk)

and (5) is satisfied for any u ∈ U . Since bk is completely mixed and ρk ∈ CO(bk), from Lemma 1,

Hi(b
k/b′iu, u|ρk) → Hi(b/b

′
iu, u|ρ). Then, from Definition 4, Hi(b/biu, u|ρ) ≧ Hi(b/b

′
iu, u|ρ). Therefore,

ρ ∈ SEB(Γ, b) is satisfied.

⇐: Consider b ∈ SE(Γ) and a sequence of completely-mixed strategy profiles and beliefs (b′k, ρk) →

(b, ρ) which satisfies the conditions in Theorem 1. If b′k satisfies the conditions in Definition 4, this proof

would be done. At the limit, b becomes optimal because b ∈ SE(Γ) and ρ ∈ SEB(Γ, b). From Lemma 1,

Hi(b
k/b′iu, u|ρk) → Hi(b/b

′
iu, u|ρ), and so when there exists only a single optimal choice in the information

set u for b and ρ, when k is large enough, biu is the unique optimal local strategy at u in b′k. If there

exist multiple best choices, the required condition (5) (biu is weakly better than the other best choices in

the sequence before the limit) is satisfied. Therefore, b′k satisfies the conditions in Definition 4.

A.3 Proof of Lemma 2

Proof: For the player i such that Ø ∈ Ui, (if i ̸= 0), Hi at Ø from each choice depends on only the

local strategy at the following node. If the following information set u exists, at u, for player j such that

u ∈ Uj , Hj from each choice depends on ρu, and ρu depends on bi,Ø (or pØ if i = 0).

A.4 Proof of Lemma 3

For players i, i′ ∈ I4 and each pair Ø ∈ Ui and u ∈ Ui′ \ {O}, we consider a two-player agent-normal-

form game Γ′(Ø, u) such that a pure-strategy set is identical to a choice set Si = {aØ ∈ AØ|∃x ∈

u such that aØ induces x in the game treeK} and Si′ = Au and the payoff from each outcome is identical.

Consider bi′,u at u such that ρ(u, b) > 0. Then, there exist a player i’s strategy σi such that

σi(s
′
i) = biØ(s

′
i)/

∑
si∈Si

biØ(si) and a player i′’s strategy σi′ = bi′u. Since bi′u is not lexicographically

dominated in the neighborhood of b in Γ, and AØ \ Si does not have any impact on Hi′ in u, the player

i′’s mixed strategy σi′ is not lexicographically dominated around σ. Thus, σi′ is not weakly dominated

(hereafter dominated). In a two-player normal-form game, it is known that, if σi′ is not dominated,

4If either player is nature (player 0), we can apply the similar logic. This is because nature just follows pu and
does not change its behavior in the sequence. For simplicity, we skip the possibility.
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there exists a completely mixed σ̂i making σi′ optimal (For example, see Appendix B of Pearce (1984)).

Because of Lemma 2, σi′ is optimal for (1− ϵ)σi + ϵσ̂i. Therefore, there exists a sequence of completely

mixed strategy profiles σk → σ which justify the player i′’s strategy σi′ in Γ′(Ø, u). Any sequence bkiØ

which satisfies σk
i (si) = bkiØ(si)/

∑
s′i∈Si

bkiØ(s
′
i) for all si ∈ Si satisfies the requirement in Lemma 3 for u

such that ρ(u, b) > 0.

Second, consider an unreached information set u such that ρ(u, b) = 0. Since bi′u is not lexicographi-

cally dominated and AØ\Si does not have any impact on Hi′ in u, the player i′’s mixed strategy σi′ is not

dominated in Γ′(Ø, u). Then, there exists a completely mixed strategy σ̂ which justifies σi′ . Therefore,

any sequence bkiØ which satisfies σi(s
′
i) = bkiØ(s

′
i)/

∑
si∈Si

bkiØ(si) for all si ∈ Si satisfies the requirement

in Lemma 3 for u such that ρ(u, b) = 0.

Third, for the optimality of biØ, we consider a two-player normal-form game Γ′(Ø) where an agent

of player i at Ø and an incomplete dictator D who selects the combination of local strategy at any

u ∈ U \ {O}. There exists a maximum of two decision nodes in each path, and so there is a bijection

from a mixed strategy of the dictator in Γ′(Ø) to the combination of bi′u in Γ both of which give an

identical outcome distribution against biØ. σD is a mixed strategy that represents a combination of bi′u

for all i′ ∈ I and u ∈ Ui′ \ {Ø}. Since biØ is lexicographically undominated in Γ, the player i’s (unique)

mixed local strategy in Γ′(Ø) which coincides to biØ is lexicographically undominated, and so biØ is not

dominated. From Pearce (1984) and Lemma 2, there exists a sequence of completely mixed strategy

profiles σk
D → σD which justifies the player i’s mixed strategy in Γ′(Ø). Therefore, by using the bijection,

there exists a sequence of completely mixed strategy profiles bk which justify biØ.

A.5 Proof of Proposition 1

Consider a lexicographically undominated strategy combination b. In the following discussion, we ignore

the possibility of player 0, because adding player 0 does not have an impact and we can apply a similar

discussion, and assume that player 1 selects a decision at Ø. In the following proof, ac(x) denotes the

unique action aØ ∈ AØ such that aØ induces x ∈ X in the game tree K. ac(z) implies the unique action

aØ ∈ AØ such that aØ induces z ∈ Z in the game tree K.

First, we focus on Ø. Since b1,Ø is not lexicographically undominated, there exists a sequence of

completely mixed strategy profiles bk → b such that H1(b
k/b1,Ø) ≧ H1(b

k/b′1,Ø) for any b′1,Ø ∈ B1,Ø.

Since Hi(b
k/b′1,Ø) depends on bkiu such that u ∈ U \ {Ø} and does not depend on bk1,Ø, b

k
1,Ø is optimal for

any bk/b′′1,Ø where b′′1,Ø ∈ B1,Ø. In the following paragraphs in this proof, without further explanation,

we consider a sequence of completely mixed bk such that H1(b
k/b1,Ø) ≧ H1(b

k/b′1,Ø) for any b′1,Ø ∈ B1,Ø.

Second, we focus on u ∈ U \ {Ø} and i ∈ I such that u ∈ Ui. Hi(b
k/b′iu, u|ρk) depends on ρku
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consistent with bk1,Ø. Since each biu is not lexicographically dominated, there exists a sequence (bk, ρk)

such that bk → b and ρk ∈ CO(bk) which justifies biu. Then, there exists the sequence of the ratios

bk1,Ø(ac(x))/ρ(u, b
k) for each x ∈ u. SR(k, u, x) denotes the ratio.

Consider a sequence of completely mixed strategy profiles and beliefs (b′k, ρ′k) → (b, ρ) where ρ′k ∈

CO(b′k). Then, from the sequence, we can calculate a sequence of the non-zero realization probabilities for

each u ∈ U \{Ø} which converges to ρ(u, b). Denote the realization probability of u at kth element in the

sequence by α(k, u). Since each choice is connected to a unique node and a unique information set (if they

exist), we can disjointly decide the ratio of each choice at Ø with which the sequence makes the realization

probability converge to ρ(x, b) and the ratio for the optimality is satisfied by the following way: For each

x ∈ u, we decide bk1,Ø(ac(x)) such that bk1,Ø(ac(x))/α(k, u) = SR(k, u, x). Then, we get bk1,Ø → b1,Ø and

each biu is optimal to bk1,Ø. For any i′ ∈ I and u ∈ Ui′ \ {O}, bkiu = b′kiu and so bi,Ø is optimal in the

sequence. For any choice at Ø conncected to an outcome z ∈ Z, we set bk1,Ø(ac(z)) = b′k1,Ø(ac(z)). The

constructed bk satisfies bk → b, and each biu is optimal in the sequence, so b is perfect.

A.6 Implication for Games with Infinite Actions

In this section, using Proposition 1, we briefly discuss “perfect equilibrium” in games with uncountable

actions. The original definition of perfect equilibrium cannot be applied to game with uncountable actions

because completely mixed strategy profiles cannot be well defined in the setting. To avoid this problem,

we utilize the following alternative definition of lexicographic dominance proposed in Okada (1991).

Definition 6 (Definition 2.2 of Okada (1991)) In b ∈ B, biu lexicographically dominates b′iu ⇔ ∃

some neighborhood O ⊂ B of b such that

Hi(b
′′/biu, u) ≧ Hi(b

′′/b′iu, u) (9)

for any strategy profile b′′ ∈ O with at least one strict inequality.

We can apply this definition to games with uncountable actions because completely mixed strategy

profiles are absent in this definition. We combine this definition and Proposition 1. When we consider

a game with uncountable actions, if each path includes a maximum of two decision nodes, and if each

player selects a lexicographically undominated local strategy, this strategy combination can be considered

“perfect equilibrium” in such a game.

Consider a game with 3 players where Player 1 selects a number au1 ∈ Au1 = [2, 3] ∪ [4, 5], and

then if au1 ≦ 3 Player 2 selects a number au2 ∈ Au2 = [2, 3], and otherwise Player 3 selects a number
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au3 ∈ Au3 = [4, 5]. Player 2 and 3 observe Player 1’s number before making their decision.

When both Player 1 and the next player select a unique number, all players get 1. If either Player 1

or the next player selects a noninteger, and if the opponent selects an integer, the former gets 0, and the

other players get 1. Otherwise, all players get 0.

There is a type of lexicographically undominated strategy combination. Since any integer lexico-

graphically dominates any noninteger, each player can select only integers in the undominated strategy

combination. Player 1 can select any local strategies selecting only integers. In the information set after

Player 1’s integer, Player 2 or 3 selects the number Player 1 selected. In the other information sets,

Player 2 and 3 can select any local strategy selecting only integers.

There are uncountably many other subgame-perfect equilibria where two players select a unique

noninteger, but they are not plausible because selecting a noninteger is a vulnerable option for players.

In this paper, we propose a way to discuss Selten’s (1975) perfection in games with uncountable actions

while avoiding technical challenges that arise from uncountable actions. We subsequently examined a

setting where Selten’s (1975) perfection is demanded. Our approach can be applied only for games with

a maximum of two decision nodes in each path. As a future endeavor, we aim to develop approaches for

discussing Selten’s (1975) perfection in more general settings.

11


	Introduction
	FSTP in Finite Extensive-Form Games 
	Online Appendix
	Proof of Lemma 1 
	Proof of Theorem 1 
	Proof of Lemma 2 
	Proof of Lemma 3 
	Proof of Proposition 1  
	Implication for Games with Infinite Actions 


